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Technical Objectives

This grant has as its goal the development of a theory of vortex breakdown capable of
identifying the physical mechanisms responsible for the phenomenon, and upon which
may be built practical methods of prediction and control of the phenomenon and its
contribution to the forces and moments on aircraft and missiles. The two-year grant
concluding May 31, 1989 initiated a systematic approach towards this ulimate goal in a
multi-part program with more limited objectives.

« The first part, Task A, sought the construction of fully nonlinear
axisymmetric solitary waves in vortices. This objective was identified in the
expectaton that the strong deceleration characteristic of vortex breakdown
can be associated with large amplitude axisymmetric waves. This
association provides a clear mechamism for the dominant features of vortex
breakdown, and, since such waves were expected to be amenable to a
relatively simple and compact mathematical representation, this prdvidcd the
prospect of a kernel for rapid algorithms suitable for design or control
purposes.

The second part, Task B, sought ways to characterize the stability of the
fully nonlinear solitary waves found in Task A to three-dimensional
perturbations. It has been suggested (and laboratory experiments support
the suggestion) that these large amplitude axisymmtric waves become
unstable when they grow to some critical amplitude, and that this instability
provides the mechanism to fix the equilibrium position and strength of a
vortex breakdown structure.

« The third part, Task C, constituted a study of the linear stability of a
mathematical model (due to Hall and Stewartson) of the leading edge
vortex. The model leading edge vortex is explicitly known, and the
objective of this part is to develop a simplified way to describe important
instability mechanisms. The hope is that, once Task B is completed, simple
descriptions, related to Task C, can be fitted to the instabilities of the large
solitary waves that we expect to find. Simplification is expected to be
important in designing rapid algorithms for design or control purposes.
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+ Because the general level of scientific understanding of noniinear transitions
in vortex flows having a component of velocity parallel to the vortex axis,
as is the case in aerodynamic vortces, is virtually nonexistent, we
undertook an additional study (Task D) on transitions in rotating Poiseuille
flow. This flow, an exact solution of the Navier-Stokes equations,
provides a convenient example to discover some of the important nonlinear
dynamical features of vortices.

Other aspects governing the physics of vortex breakdown are of key importance, but were
outside the scope of this two-year grant.

Status of the Research

Task A has been completed. Preliminary repdrts were given in [1] and 2], and a paper
reporting the full details has been submitted for publication [3]. The manuscript for {3] is

enclosed and is made part of this report by reference. The principhl findings are that fully

nonlinear solitary waves do exist, and that their properties are approximately captured by a
remarkably simple ansatz. The paper also discusses large amplitude periodic wave trains,
nonlinear deformations of vortex flows, and the interrelationships between these various
classes of vortex flows. A more limited mathematical method also has been applied to this
problem. A draft paper on this work exists ([4]): completion of this paper was
consciously delayed partly because numerical work (since done) was thought desirable to
make the findings of [4] more concrete, but more importantly because the work [3] was
given a higher priority. We plan to finish and submit (4] for publication.

Task B is in progress. The mathematical problem to be solved here is a linear eigenvalue

problem for a set of partial differential equations in three space dimensions. The problem is

not separable, so the standard normal mode analysis technique of hydrodynamic stability

theory does not apply. Because the numerical problem to be solved is extremely large, an - - |
. . . . ~n For

attack on the problem capable of resolving the physically important scales required the YagT ‘?44

development of new numerical techniques to solve large algebraic eigenvalue problems. 0
The lack of efficient methods to accomplish this has been a stumbling block in the past. :j‘on ——_45
Under Task B, such methods have been developed, and a report on the algorithms -
developed is given in [5], which is also enclosed and incorporated in this report by o
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reference. Results using these numerical techniques on the stability problem were not
available by the termination of the reporting period.

Task C is partially completed. Our work on the Hall-Stewartson model of the leading edge
vortex has addressed the large Reynolds number limit, for which we have detailed the
existence of unstable modes. This work was first reported in {6]. A draft of a paper (7]
with a full description has been prepared. We have not yet found the critical Reynolds
number for the onset of instability, since this requires a more extensive numerical effort.

Task D is partially completed. One paper describing mathematical aspects of the rotating
Poiseuille (pipe) flow exists in draft form ([8]) and will soon be submitted for publication.
Other work, detailing the nature of transitions and mode interactions has been done and has
been briefly reported ([9]). The latter work traces a series of transitions in rotating pipe
flows to chaotic states, and a paper will be written to report that investigation. We also
have started, but not yet completed, work on three wave resonant interactions in rotating
pipe flows.

Publications, Papers in review, Papers in Preparation

[1] S. Leibovich, Fully nonlinear structures, wavetrains, and solitary waves vortex
filaments. In Nonlinear Wave Interactions in Fluids, ed. by R.W. Miksad, T.R. Akylas,
& T. Herbert, AMD-Vol.87, Amer. Soc. Mech. Eng., 1987, pp.67-70.

[2] A. Kribus & S. Leibovich, Fully nonlinear waves on vortices, Bull. Amer. Phys. Soc.,
(Abstract Only.)

[3] S. Leibovich & A. Kribus, Large amplitude wavetrains and solitary waves in vortices.
Submitted to J.Fluid Mech..

[4] S. Leibovich & A. Kribus, Monotone solutions for flows branching from columnar
vortices. In preparation. Likely journal, Acta Mechanica.

[6] Z. Yang, S. N. Brown, & S. Leibovich, "Linear Instability ¢- = Hall - Stewartson
Model of Leading Edge Vortex", Bull. Amer. Phys. Soc., (Abstract Only.)

{71 S.N. Brown, Z. Yang & S. Leibovich, On the linear instability of the Hall-Stewartson
model of the leading edge vortex. In preparation. Likely journal, J. Fluid Mechanics.

[8] A. Mahalov, E.S. Titi & S. Leibovich, On invariant helical subspaces of the Navier-

Stokes equations. In preparation. Likely journal, Archives for Rational Mechanics &
Analysis.
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(9] A. Mahalov & S. Leibovich, Nonlinear mode competition leading to chaos in rotating
Hagen-Poiseuille flow. Planned paper. Likely journal, J. Fluid Mechanics.

Participating Professionals

Sidney Leibovich, Samuel B. Eckert Professor of Mechanical and Aerospace
Engineering, Cornell University.

Susan N. Brown, Professor of Mathematics, University College, University of
London.

Mr. Abraham Kribus, Ph.D. candidate, Cornell University.

Mr. Yang Zhigang, Ph.D. candidate, Cornell University.

Mr. Alexander Mahalov, Ph.D. candidate, Comnell University.

Interactions

Technical Meetings

American Physical Society Division of Fluid Mechanics, Eugene, OR, November 23,
1987, "Fully nonlinear structures, wavetrains and solitary waves in inviscid vortices" (A.
Kribus, A. Szeri, & S. Leibovich)

American Society of Mechanical Engineers, Winter Annual Meeting, Boston, December
13-18, 1987. "Fully nonlinear structures, wavetrains, and solitary waves in vortex
filaments". S. Leibovich. Invited Paper.

American Physical Society Division of Fluid Mechanics, Buffalo, NY, November 20,
1988. "Linear Instability of the Hall - Stewartson Model of Leading Edge Vortex".
(Z.Yang,S. N.Brown, & S. Leibovich)

American Physical Society Division of Fluid Mechanics, Buffalo, NY, November 20,
1988. "Amplitude Expansion for Viscous Rotating Pipe Flow Near a Degenerate
Bifurcation Point ( A. Mahalov & S. Leibovich)

American Physical Society Division of Fluid Mechanics, Buffalo, NY, November 22,
1988. "Fully Nonlinear Waves on Vortices" (A. Kribus & S. Leibovich)

Seminars

"Static bifurcations of vortex flows", Department of Mechanical Engineering, Yale
University, September 30, 1987. (S. Leibovich. Invited)

"Fully nonlinear wavetrains and solitary waves in inviscid vortices”, NASA Ames
Research Center, November 16, 1987. (S. Leibovich. Invited)

"Static bifurcations from columnar vortices", Department of Theoretical and Applied
Mechanics, Cornell, Dec. 2, 1987. (S. Leibovich. Invited)
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"Vortices, nonlinear waves, and vortex breakdown” , Arizona State University Department
of Mechanical & Aerospace Engineering, March 24, 1988. (S. Leibovich. Invited)

"The Phenomenon of Vortex Breakdown", University of Minnesota Department of
Aerospace Engineering and Mechanics, November 4, 1988. (S. Leibovich. Invited)

"The Vortex Breakdown Process", George W. Woodruff School of Mechanical
Engineering, Georgia Institute of Technology, November 11, 1988. (S. Leibovich.
Invited)

"Static Bifurcations of Vortices, and a Peek Beyond", Center for Fluid Dynamics,
Turbulence, and Computation, Brown University, April 4, 1989. (S. Leibovich. Invited)




LARGE AMPLITUDE WAVETRAINS
AND SOLITARY WAVES IN VORTICES

by
S. Leibovich & A. Kribus
Sibley School of Mechanical & Aerospace Engineering
Upson Hall, Comell University
Ithaca. New York 14853-7501

Submitted to the Journal of Fluid Mechanics

Abstract

Large-amplitude axisymmetric waves on columnar vortices. thought to be related to flow
structures observed in vortex breakdown, are found as static bifurcations of the Bragg-
Hawthorne equation, equivalent to the steady, axisymmetric, Euler equations. Non-trivial
solution branches bifurcate as the swirl ratio (the ratio of azimuthal to axial velocity)
changes, and are followed into strongly nonlinear regimes using a numerical continuation
method. Four types of solutions are found: multiple columnar solutions. corresponding to
Benjamin's “‘conjugate flows™, with subcritical-supercritical pairing of wave characteristics:
solitary waves, extending previously known weakly nonlinear soiutions to amplitudes large
enough to produce tlow reversals similar to the breakdown transition: periodic wavetrains:
and solitary waves superimposed on the conjugate flow that emerge from the periodic
wavetrain as the wavelength or amplitude becomes sufficiently large. Weakly nonlinear
soliton solutions are tound 1o be accurate even when the perturbations they cause are tairiy
strong.




1. Introduction

This paper 1s concernea with axaally symmetric stanaing wavemrans and soiitary
waves. without restriction to intinitesimai or weakly noniinear ampiitudes. in inviscid
incompressible vortex tlows . Althougn the paper may be regarded stricdy as a
contribution to understanding or waves which may propagate on vortex cores. our
motvaton 1s the expiorauon of a conceptuai picture of vortex breakdown given by
Letbovich (1983) (and in a more widely accessible review in 1984, we shall designate
either of these reterences as L).

In aerodynamic contexts. the global flowtield causes impressed forcing on
concentrated vortices embedded in it.  Generally, the spatial scales of the forcing are large
compared to scales associated with the vortex core. A conceptual model of vortex
breakdown is promulgated in L, guided in pant by laboratory expeniments and in part by
the weakly nonlinear "trapped wave " theory ot Randall and Leibovich (1973: or RL). In
the scenario outlined in L. vortex breakdown is a process that involves a crucial admixture
of a strongly nonlinear axisvmmetric wave propagating in a vortex ~“waveguide” having
axially varving charactenisucs tand hence an axial pressure gradient). and a smailer
asymmewric perturbation arising trom instability of the big wave. The pressure gradient
impressed by the waveguide does work on the axially symmetric wave. causing it to grow
to large amplitude. The weakly nonlinear rapped wave theory of RL indicates that wave
growth of this sort leads to a positional instability ot the wave, as it grows, it propagates
faster, and an equilibrium position cannot be established (with respect to a reference trame
fixed by the waveguide) unless there is a mechanism for extraction of energy from the
axisymmetric wave. RL invoked viscosity as a mechanism to dissipate wave energy. On
the other hand. laboratory experiments (such as those done by Sarpkaya, 1972 and by
Faler and Leibovich. 1977, 1978) show clear evidence of nonuxisymmetric features within
a nearly axisymmerwic “bubble” form of vortex breakdown. and the onset of asymmetry is
consistent with an instability ot the axially svmmetric tlow. If the “bubble” were regarded
4s a manifestaton of a large ampiitude. nearly axisvmmetric. wave. then instability to
asymmetric perturbations otfers the possibility of much larger energy wansters trom the
wave than wouid viscous dissipation. Furthermore. the teatures of vortex breakdown
appear to depend little on viscosity. at least at higher values of the Reynolds number.
Consequently, it 1s suggested in L that the required energy extraction trom the strongiy
nonlinear axially symmetric wave arises by the transter ot its energy to azimuthally
asymmetric modes of mouon which arise by instability. (It is pointed out in L that a large
amplitude axially symmemmc mode - large amplitude implying a variation occuring on axial
scales comparable to the vortex core radius - is required in vortex breakdown. since only
this component ot a Fourier decomposition in the azimuth can lead to the deceleranon or
tluid on the vortex axis that 1s the hallmark of vortex breakdown.) On the basis ot their
experimental observations in tlows very ditferent trom those already cited. Maxworthy.
Mory. and Hoptinger (1983) also suggest. in a paper published in the sume 1983 volume
as the paper by Lethovich. that breakdown 1s associated with loss ot stability ot large
axially symmetric waves to nonaxisvmmerrc perturbauons.




To expiore this suggestea process. we have aivided 1t into eiements wnich at a later
time must be recombined. The first eiement is the lurge ampiitude axiaily svmmetnc wave,
and the the aim ot this paper 1s to deveiop a better understanding ot these waves. The other
ingredients ot the hvpothesis. not vet considered. are ioss ot stability to asvmmetric
perturbations. and etfects engendered by axial inhomogeneity caused by the global
flowrield.

In axiaily symmetric steady rlow. 1t 1s weil known that the Euler equanons ror
inviscid swirling tlow may be reduced to a single elliptic parnal differential equation ror the
streamtunction. This equation seems to have been tirst discovered by Bragg and
Hawthomne (1950), and in this paper we will refer to it by their names. Following
Leibovich, 1985, we parameterize the Bragg-Hawthome equation (BHE) by the reiatve
level of the swirl. and construct standing waves. either infinite wavetrains or solitary
waves. by studying the branching behaviors which arise as the parameter is varied (other,
nonwavy tflows. were discussed by Letbovich. 1985, from this starting point. and a few of
the results to be detailed here ror weakly nonlinear wavy tlows were announced in
Letbovich. 1987). The procedure can thererore be described as a search tor statc
bifurcauons ot the BHE. Another natural parameterizaton that might have been chosen as
a starting point for a bifurcaton analysis is the wave speed of waves of permanent torm.
Here one adds a constant parameter to the primary axial velocity protile. given in a speciric
frame of reference. and regards the swirl as tixed. This choice. although more userul for
some purposes than the parameterizatuon using swirl level. introduces the wave speed
parameter into the problem in an awkwardly nonlinear way, and we have not made use of it
in this work.

Branching, when it occurs. is from a primary columnar vortex. assumed to be
given. The tlows which bifurcate from this vortex are required to have the same volume
tflow rate. and the same total head and circulagon vanation with sreamtunction as does the
given vortex. With these constraints and the assumption that the flow is either periodic in
the axial direction with a finite wavelength L or is columnar at upstream and downstream
infinity. we find that new tlow branches may be ot four kinds. One class (. discussed in
§4) of bifurcatng rlows 1s again columnar. so there are no axial vanations: a second ciass
(I1. §6) consists ot solitarv waves with the pnmary flow at upstream infinity: periodic
wavetrains comprse the third class (II1. §5); and a fourth class (IV. §5) consists of solitary
waves that approach a columnar tlow at large axial distances that is distinct from the
primary columnar tlow.

The columnar branches. ot which there 1s an intinite number. when taken ogether
with the primary tlow. are the "conmugate” flows defined and discussed in Benjamin's
(1962) seminal paper. Two ot these are especially important and receive emphasis in
Benjamin's work: these are the pnmary tlow. and what we shall call the principal comugarte
flow. which 1s the cojumnar tlow pranching at the principal. or lowest. cigenvalue or the
lineanzed problem. and theretore ditfering tfrom the pnmary tlow by an azimuthal vortcity
that does not change sign. The procedure adopted here allows one to determine how these
flows are connected together. We are also able to show that. at a columnar-coiumnar
hifurcauon point between the primary tlow and its principal conjugate. there 1s a transter ot




Bemamin s (1962) cniucality ciassincauon of the tiows. Thatis. it one tiow 1$ supercnuca
on one side or the bifurcauon point (does not admit upsoream propagaung waves or
:nrinitestmai amplitude. and shorter standing waves). then the other coiumnar orancn 1s
subcrincal (admits upstream propagaung waves). and that these properues or the prancnes
Are exchanged as the bifurcation point 1s passed. (N.B. We use some of the language or
biturcation theory. but our use of the terms supercritical’ and ‘'subcritical is according to
Benjamin's wave classificaton. and 1s not reiated to the direcuon or bifurcauon.)

Fully nonlinear solutions have been determined numericaily. This or course
requires that specific exampies of primary voruces be considered. We have cnosen one
family ot examples. uniform axial velocity and the Burgers vortex. While the unirorm axiai
velocity of this primary vortex differs trom the jet-like or wake-like character or flows in
which vortex breakdowns have been observed. the principal columnar rflows which
bifurcate from our example are either jet-like or wake-like depending on swiri level. and
thererore closely resemble flows upstream or downstream. respectively, or vortex
breakdown. In addition to the general results on coiumnar branches aiready mentioned.
we note here an interesting - though academic - feature of the principal columnar branch.
We have round that this branch can be numerically continued to very smail swiri levels.
With this ciue as a point of departure. we show (in §4.4) the limit of vanishing swirl by
asymptouc means. showing that contnuation to zero swirl 1s possible.

Numerical examples ot fully nonlinear wavy solutions similar to some of those
discussed in this paper have been presented by Hafez et al. (1986) (an abbreviated account
is given by Hafez and Salas. 1985). Our paper gives a considerably more comprenensive
picture of the inviscid picture by identitving classes ot solutions other than penodic
wavetrains. and by uncovering the connections between them. The results ot Hafez et al.
were computed for a different (although more or less similar) class of primary vortces. vet
thetr results are qualitatively similar to ours. This, and the theoretical argument of this
paper. leads us to believe that the response to variation ot swirl, and the main
charactenistics ot the tlows to be described here. are not the consequence of a speciai choice
ot protiles ror the numerical work. but are of generai appiicability.

Solitary waves of class 1l can be tound for the supercritical values of parameter by
numerically continuing known weaklv nonlinear solitar- waves (with our choice of primary
vortex. we have access to weakly noniinear resuits found by Leibovicn. 1970, which we
use as a starung point) to large ampiitude. These solitarv wave tlowtields approach the
primary coiumnar tlow asymptotically at large upstream and downstream distances. Their
ampiitudes can be increased to values sutficiently large to cause stagnation points to appear.
tollowed by encapsulated regions ot closed streamiines. The uulity ot the results when
tlow reversals are present requires carerul consideration, particularly since added
nonuniqueness enters in such circumstances. and the consistency requirement of the
Prandtl-Batchelor criterion 1s violated. We believe that the resuits wiil prove to be of vaiue
At these large amplitudes. and discuss the reasons tor this beliet in the final section (7).
Annterestng and potentally usetul point 1s that even at ampiitudes large enough to cause
stagnanon and reversed flow, the weakly noniinear solitary wave solutions remuains an
<ood approximation to the resuits of the tullv noniinear calculanions.




For supcnitical parameter values. periodic waverrains (class ill) have oeen rouna oy
aumerical conunuation beginning with inrnitesimal waves. A\s the amplitudes of the
periodic waverrains incredase at tixed waveiengn in the numencai exampies (as they do
wnen the parameter measunng swirl increases). the wave ougns become highly localized.
und the wave crests become very broad. These proad crests have virtuaily no axial
»aration. that is. thev are neariv coiumnar. We snow tnat these neariy columnar rlow
closely approximate. at large wave ampiitude. the columnar principai conjugite vorex.

The same kind of behavior is tound to hold when the swiri levei is held fixed. but the
wavelength of a wavetrain is increased. In either case. an individual wave wough
approaches a solitarv wave with the principal conjugate coiumnar vortex being the tlow at
‘large " distances upstream and downstream. Thus. we are led to another family ot solitarv
waves (class [V) disunct from those supported by the primary vorex. but clearly connected
10 1t.

2. Problem formulation

The Euler equanons 1n cviindnicai coordinates (r.8.z) tor steadv, incompressible.
axiaify-svmmerric rlow may be reduced to a ingle elliptc parual differenual equaton tor
the Stokes sweamruncrion. v, related to the radial (u) and axial (w) by

U= ‘r-l\yz W= rgl‘yr.

The equation. which connects the azimuthal vorucity to the total head and circuiaton.
seems to have been rirst found by Bragg and Hawthome (1950) and is given by

D:w = r:H'(\U) - FF(uw ‘BHE)

~vhere

DoV =vmr- Uy wr gz

is —r ~! the azzmuthal component of vorticity. -\ number of other authors have made use of
this equanon notably Long (1953), Frankel (1956), Squire «1956), and Bemamin « 1962,
See Batchelor (1967) for a convenient reterence tor a derivaton orf BHE. following Bragg
and Hawthorne. or Yih (1965) for a derivation by an alternate method. The reclacement ot
‘ne Euler equatuons oy BHE is jusutiable at ail points 1n a steadv. inviscid and axiaily
svmmetric tlow with the possible exception of mendional SENaton points (1.¢., Wnere u =
W = (. but v. the azimuthal velocity component. may be nonzero). which are singuiar
~omnts of the transrormanon. In BHE. Hown. the total head or Bermouili funcuon




HOg) == = (1/2) vev . )
)
+

and FQy), the circulation about the Symmetry AxXis (Qpart [rom i Lictor or 23,

Fw) = nvtr.z) 02

are tuncoons ot W alone.  That F is 4 tunction of W alone 1s a consequence of conservauon
ol anguiar momentum 1in an inviscid luid.

Solutions to (BHE) are solutions to the Euler equatons unaer the stated
restrictions. and different inviscid flow problems arise from the speciticatons ot the pair ot
tuncuons H and F. The simplest cases are those tor which the radial component ot veiocity
vanishes at some plane z = z, on which the axial (w) and azimuthal (v) velocity
components are specitied to be W(r), V(r) with W = (), then H'(v) and F are easily
determined (see Benjamin. 1962). In this case. which we consider here.

1_;2 V& (3)
p ur B r
at this plane. Since
f (4
w(r.z,) = ; rW(r) dr ='Y(r)
‘ (

we can suppose this latter relation to be inverted to give

r=Ry) ')

This inversion can always be done tin principle) it Wir) =0, Atz =7,.we can now
" ' t

regard Woas a tuncuon ol W, since

1 dw 1 dw (H)
W o= - = s
vV e TRRAAY R(\U)JR {R(wy))

With Vir) prescniped. Fow) s determined 1o be

Vo= v = Row ViR(w). £

The pressure may now be tound as a function of W trom 31 by integranon.




Riw) 1)
i i CoVTn)
—p =—pWz - [ ——dr.
P » ) ’

and thus H(y) may be identiried. If the raaial velocity 1s not given 10 be zero at z=z,. but1s
prescribed as some nontrivial function of r, a similar construcuon ot H(y), F(w) can be
carried out. We call the tlow given at the piane z=z, the “specitving tlow . this wiil be
taken to be the basic, or primarv, tlow and the starting point of our investigations.

Only H'(y) is required for the analysis. H(y) itself is not needed. Ata plane z=z,

whereu=0.v=V, w=W and

dH oHdR I _dF 1 dW (
— = — 2 e F— - = — (9
dv T dy R- 4y R d

Now we suppose that, at z = z,. the functonai form of the swirl V(r) 1s tixed. but
the level 1s adjustable. so that

F(y) = A f(y) L. (0

where f Is a fixed function, and A is an adjustable constant. Equation (BHE) fc: & gxy
+

be writien p
P hl o) bl
D w = rA(y) - ~7Bly,r) (1D
where
Aty S ﬂ\R(\un. and Bw.) (12)
R(\U) dr

b ] . Rl
= Re(y)-r=) ff '(y)/R(y) .

B g

With the appropriate interpretation of A. we may regard equation (I 1) as
Jimensioniess. Thus. if we scale distances by a charactenstc radius b (such as that or a
hounding tube. or. alternatuvely, the location of the maximum swirl speed). the specitving
axial velocity with a charactenistic speed Wa (such as its value on the axis). the
streamtunction with b=Wa, the azimuthal speed with a tvpical value Vo (such as the
maximum occunng in the tlows. then

\"t\

/= m




and we may nterpret (1) as a dimensloniess equation.

The pArameler A 4ppedrs only as A=, ind so we replace 1t nerearter witn

and as a consequence of its definition. onty admit posiave values of A.

Suppose the boundaries of the tluid in the (r.z) plane have. as two constituents. the
impermeable cviindersr =a and r = | > a (here we have chosen the outer tube radius as
length scale for our problem). The columnar specifyving tlow

v =Y. t14

is a soluton or (11) holding for ail A >0. We now wish to tind other solutions. periodic
in z with a prescribed wavelengtn L. Since both the specitving columnar tlow and any
other wave-like sojutons that may exist simuitaneously sausty the same mathemaucal
problem.and one possibility for this 10 occur is by bifurcation of new branches of soludons
tfrom the specifying tlow. and the multiple solutions so obtained. when of small ampiitude,
may be idenufied as the waves propagating on the specifyving tlow previously four.i 'n the

g

literature (ct. Long, 1953, Frankel. 1956, Squire. 1956. Benjamin. 1962). Let 7™

D= - (),

represent the perturbation streamfunction. If there are other solutions, there is a z-periodic
nonmvial soluton to the (ellipticy parnal differenual equanon

N(®.A) = DD + Q(DrA) =) (16a)
where
QD) = AP - Q) (16b)
with P(D.r) = BOP « b, ) - BOY. )
and Qb = AP +Dy- AP

satistving the boundarv conditions

Dla.zy =Dz =0, 1O

O(rz-=L, = (D(r.z’-%L) “lod)

S




The noniinear problem admits solutions even 1n z. and we tocus on these. In
4ddigon 1o admitung solutons with this svmmewy (z — - ). solutons are 4iso admitted
with z — z + h. rfor any h. Thus. smooth z-peniodic solutions may be constructed by
dppropnately piecing togetner by rerlecuons and shifts) solutions satistving the Neumann
boundary conditions,

a®

<p
—rl)) = "'—tr,-l-L) =) (16e)
JZ JZ -

3. Static bifurcation analysis

The Bragg-Hawthome equation describes only steady. or ‘static’. solutions. It can
theretore be used to describe branches of the tamilies of steady solutions corresponding to
the same tuncuonai forms (as tuncuons of the sreamtuncdon) for the total head and
circulation, and the same voiume rate ot tflow. The bifurcation and conunuaton of such
branches is discussed in this section. The queston or the stability of the vartious solution
oranches ot the BHE is a dynamical problem. This cannot be answered in the context of
the BHE equation. and it 1s necessary to return to the Euler equations in which solutions to
BHE are embedded. This is addressed (for columnar solutions only) in §5.

3.1. Perturbation expansion

We know that the specifving tlow. @ = 0. is a solution to the problem (16) for any
value of the parameter A. This can fail to be a unique solution branch for a given A only
when L(0.A), the operator defined by the linearization of N(®.A) about ¢ =0. is not
mvertible. This occurs oniy when the parameter A coincides with an eigenvaiue. (L (savi,
‘or the linearized probiem

R o
L0.A)0, =D, + —0.r.A) 0, 7
oD i )
= D0, + Ao —rz(&().r)[on =0,
oD od
oplazr =012 =0, otz -+L) =0 .z L. t17by

For .\ near on eigenvaiue W. we construct a solution branching from the
specirving tlow mn a perturbation series. This wiil provide a local approximation for the
-olution branching at 4. which we wiil continue numencaily to jarger values or i\ -
Let




AMEy=U +ERE) = U + E(K,y = EX

and set

b= Oy T 0,

SW(TR) = UpD) - rg (1),

1

18

~ ...} i 18b)

119a)

(19b)

{19¢)

where 1 reters to any eigenvalue of the linearized problem t17) and o the corresponding
eigentuncuon. € is a small ordering parameter measuring the ampiitude or the bifurcating
solutions and the difference between A and its value y at the bifurcation point. and the dots
stand for higher order terms in €. When these relationships are substituted into (16a).
Taylor series expansions in powers of € carried out and each coetticient in the senes is set

to zero. the first three coetficients are

A
LOOM)Og = D“0y+ | py(r) — rogq (Do, =9 (20a)
LO.wo; = - {Koppndy ~ s:(’r:u)oqz} (20b)
LIO.)0s = - IRy P N0, + KapPy(r10, + K,\pg(r:_u)on: - 20¢)

25500 + SalTH IOy

and all the o saasty the same boundary conditons ( 17b).

Note that

and

g9

1df
i dr

<
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The numerator of p,tr), when muitpiied by A. 15 Ravlelgn’s discriminant. ana
thererore sensible prooiems. in the context of consideranons such as 1n this paper. wiil
hiave py(ri >0, and we assume this to be the case. (Otherwise, the pnmary riow 1§
unstable.) Only positive vaiues of U can correspond to brancn points. since A > () by
Jerinidon. If pyir) > 0 ana gy(r) 2 0. then the smailest (or ‘principai”™) eigenvaiue 1s
suaranteed positive (Leibovich. 1985), and is thererore a possible branch point. Positive
values of g,(r) are not necessary tor this to be so. In the development below. we tacitiy
assume the smalilest ergenvalue 1s posiave. If this i1s not so. then the mathematical changes
needed are obvious - one deals oniy with the positive eigenvalues. of which there 1s an
infinite number - but the branching solutons are likely to be unstable and theretore
physicaily uninteresung.

The problems we have posed here depend on two parameters. A and L. once the
specitving tlow 1s selected.

The principai etgentuncuon has no zeros in the interior or D (Courant and Hilbert.
1953), and without loss of generaiity. we therefore may take it to be nonnegauve. Even
eigenfunctions are all of the form

Op = ApminicostImnz/L), (2D

where the integer index p is the number of internal zeros of ;(pm(r), which satisties the

problem
d. 1dy - 2mm 2 (22)
(rE)(\r—Q;-”—‘,\»a Wom PO = T=0 (1) = (== | Ly =0

Lom{d) = Lopia) =4

Here we have iabeled the eigenvalues according to the indices p and m corresponding
to the associated eigentuncuen. The principal eigentuncuon corresponds to m = 0 and to the
index p, which we can take to be p = (). such that the funcuon ¥y,(r) has no zeros internal
to D. The principal eigentunction belongs to the eigenvalue Wy, and 1s a funcuon ot r alone.
A solution which branches trom the prnincipal eigenvaiue theretore corresponds to 4 new
columnar tlow 1which we wiil call the “principal conjugate branch™ since 1t 1s 4 conjugate
‘low as defined by Benjamin. 1962). and an intinite number ot other columnar riows talso
conjugates 1n the sense of Benmamin) branch trom larger ergenvaiues corresponding to m = ¢
«nd the ergentuncuons (). tor p = i.2.3.... solutions periodic in z (standing waves:
nranch trom ergenvalues corresponding to eigenrunctions withm = 0. NModes tor ail
values of mare characterized by the number of zeros or their ergentuncuons With 7,0

having p internai zeros.




The ergenvaiue problem (17, :s 10 standard Sturm-Liouviile torm (Courant &
Hilbert. 1953). und some of its teatures (such as bounds on (¢ smatlest ergenvaiue) are
discussed by Leibovich (1985). There 15 one comment which 1s worth making at this pomnt
ubout this eigensystem. in addition to the observatons we have already made.

Eigenvalues corresponding to z-dependent eigenrunctions (consutung "wavy modes.
with eigenvaiues exceeding ), decrease as L increases (Courant & Hilbert. 19531, ana
4s L = oo, (14 is an accumulation point for the wavy eigenvaiues Wy, m = . For e
same reason. waves corresponding 1o higher radial modes have accumulation points. with
Hom = Ugpas L — e

3.2. Branching behavior

If &, is an eigensolution. then the solution to the adjoint eigenvaiue problem
with an unweighted inner product is oyr, or alternatively. the problem 1s self-adjoint
under the inner product

(F.G) =FQG)

where

r‘l(wdr dz.

(o) =

and D is the spatial domain in which our problem 1s set.
For the problem for 0, to have a solution. the soivability condition

. '/53(r:u)0(\3> (23)
Ko = = 77—
pyrog™)

st be saustied. [ W= iy, is the smailest ergenvalue. then 0, 1> the pnmary
cigenfuncton. which may be taken 10 be posiuve. Unless Wugp,(r) - r:q:m 1s distnbuted
in a special way, then. K, is nonzero und the bifurcaton at fyy occurs with finite siope
(1.e., it is transcritical or dA/de # () at € = 0).

The eigenfunction corresponding to L, the lowest eigenvalue torm = 1. 13

(]

—_- seveveyef ) A
0n = % ioicost2uz/l). (
According 1o 123), Ky, = tor soiutions branching from U, since the defining
‘ntegrais extend over one period in z and the numerator theretore vamishes.  The differennal
cuuanon determining Op. trom (20b1 1y now




L0101 = - 1Ly P4tT) - 7=0atn)] 07 23)

L, : 2.
= - SiHg1patr) - r-aunjf 1~ COSTT Ly

with solutions in the form
. L inz (26
0p = fir) = f(rjcos——. )

The direction of the bifurcation is fixed now by ;. Assuming x; # 0. \(€) — g =

> . . o dA  d2A
K;€~ + ..., and the bifurcation there is a pitchfork (T: 0 and -d7—v= Gate=0). The
€ <€

value of K, 1s determined by the soivability or (20c). and the tormula corresponding to (23)

IS,

.
1289(r:l)0n~ 0y + s:(r:u)O(fL) (27)
<P](r)00-)

K] = -

and this does not generally vanish.
The solutions bifurcating at iy, are wavetrains with wavelength L in an axially

infinite region. By developing the series solution in €. a finite amplitude periodic wavetrain
may be constructed.

When L — oo, 1 = 5y + O(L™%), and the solution of the inhomogeneous
ordinary differential equation for ty(r) is of O(L%). As a consequence. the series (18a)
becomes disordered when eL= = O(1). The wav to deal with this non-uniform behavior tfor
ong-waves by the method of mulupie scales (or equivalent methods) is weil-known. In
the context ot the approach taken here. the expansion is centered about the columnar
biturcation point. Wy, 1The procedure. sketched in Letbovich (1987), goes as follows.
Letting Z be the slow scale. with Z = zve. @ = A(Z)0g(r) (at lowest order), then 0g(r) is the

principal eigenfunction corresponding to the eigenvalue Wy, and A satisties the equation

d-A - .
— -~ A"+ BKA = 0) 128a)
Jz- BRa

where X, 1s defined by 1 18b). as betore. but is no longer restricted by the soivability

condition 23). and

4
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The analysis. aithougn by a different route. 1s essenually that of Bemamin (1967).
Equauon (28a) has the soiitary wave soiution

A = asech?| Va6 Z} = asech?| \agwo z] (29a)

provided ac > () (and has no such solution otherwise). The constant a in (29) is related to
the parameters in (28a): with the level of the extreme value of A setto be a and placed at z
={). as has been done in (29). the amplitude a. or more precisely. €a. is linearly related to
the swirl rate by

2a (
\:“'00—.-—63“ (--)b)

In this discussion. 1t has been assumed that € is positive. so that waves of elevation or
depression depend on whether a is positive or negative: since we must have ax > (), the
question devolves 1o the sign of a. which is a functional of the specifving flow.
Furthermore, since 3 > 0. (29b) shows that solitary waves may exist only for A < 1. In
this parameter regime. no standing waves are possible (since they all branch from
cigenvalues greater than Ly,), and by definition this is a supercritical regime. Thus (29b)
makes clear that weakly nonlinear solitary waves form only on supercridcal flows. Further
Jiscussion of the crinicality classitication is given in §5.1.

The weakly-noniinear soiitarv wave soiutions tound by Letbovich (1970) from the
{ime-dependent Korteweg-de Vries equation are equivalent to those given above. This
aternanuve form etfectively derives trom the alternative parameterization ot the time-
independent problem by wave speed (instead of swiri level) mentoned in the Introduction

and is

(¢
o

"Y"l CH \:T 1 - 2
= €a 0nlr) sechs | = | o (z - cot + TEACIL )] 30

(W

where a4 is an arbirary ampiitude. Oy is the eigentuncuon of the lineanzed problem
squivalent to (27). the ¢ are constants depending on the base tlow and oo, and are
squivalent o o and B in 28). For a given base tlow. the vaiue of £a determines the wave
<mplitude and thererore its velocity: or. alternativelyv. the change in the base tlow axial
component that wouid make the solution stationarv . Changing A (that 1s. the azimuthal
somponent instead wiil produce the same results provided the swirl ratio is the same: o




selecting an ergenvaiue and setting A (or A) compietelyv determines tnis approximate
solution,.

The numernicai construction ot solutions along a branch can be done by a simpie
conunuation method. starting with solutions generated numencally by the perturbaton
nrocedure described above.

3.3. Branch continuation
To “continue ' (Kubicek & Marek. 1983, gives a good summary or continuaton and
hifurcation methods) a solution ((DO“'\O) known at a given value of A = /\O, 10a

neighboring vaiue differing from AO incrementally, we could proceed by taking ¢, as an

initial guess for (A, + AA) in a suitable iterative procedure. such as Newton's method.

® =& - Ll

n+l = “n UN(D, ..\ (31)

n*
using an approprnate discretization tor L and N. This will give a solution if L is not
singuiar, that 1s. it no bifurcanon or tuming point is encountered. and if AA is surficienty
small. To increase the size of AA while sull providing a good guess for the iteration, we
can proceed in the following standard way by differennating along solution arcs (P(A).A):
since

N(DO(A),A) =0,

dN IN| b N
—DPA)= — * — - — =
dA ID| DA GA A |D:A

Then. at any point (P A). the "slope " of the solution curve

<i> Er-jib-z —(?ﬁ' ’—1P(<D)=-L'1((D.A)P(<D)
A |od(dnA
assuming the linearized operator L(®.A} is invertble with inverse L-1(b.A). We can
think of (31) as a differential equation tor & as a function of A. We use (31) and (32b). in
A numerical algorithm described in the appendix. in a predictor-corrector mode. e tirst
ntegrate (32), using a Runge-Kutta method to arrive at an estimate for @ at Ao + AA
assuming a solution 13 known at A, and then retine this estimate using Newton iteration
31). We begin euch solution branch by using a three-term perturbation expansion. 2iso
Jescrnibed 1n the appendix. which is the discrete version of the analysis given in §3.2. This




procedure wiil fail if secondarv piturcanon points or WIning poInts dre encountered as i
glven branch is raced. and then a more invoived procedure. such as that devised by Keller
c1977) (see aiso Kubicek & Marek. 1983) wiil be required. \We did not encounter such
~omplications in the course of our investiganons.

To do detailed calculatons. we must seiect a particular specirving rlow. We wiil
¢xpiore the possible branches or solutions stemming rrom the following simpie coiumnar
vortex. which has been previousiy weated by Leibovich (1970):

Wi =1 (33)

A
Vir =={1 - exp(-ars)}.

This example is known as the Burgers-Rott vortex. It corresponds to the tollowing
speciticauons or the funcuons arising in §2:

——

\{J(r) I’l\'f‘?'. R(W) = 2\/ W, I‘(W) = l - Cxp( _2aw) '34)
| - exp(-200w)
Aw) = 0: BOyr) =y - ?lfz) 20 expl -20W ) f— .
il »
P(®) = Bl 62 + D) — Bl 321 Q@) =0 <

3.4 Numerical Impiementation

The problem stated in (16) is discrenzed using cenmal differences on a rectangular
mesh in the mendional plane (r.z). Let @, D. £ be the finite-dimensional counterparts of
b, D-. Q. as derined in the appendix: (16) then corresponds to the marmrix equaton—

D®+ QDA =0 (35)

Equation (35) is the basis for the numerical treatment. We do not discretize steps of
the analytical procedure separately: rather. we provide an equivalent analvsis for the ap-
proximate equation (35). A separate discretzation ot (22). for example. leads to
cigenvalues that are slightly different than the bifurcanon points of (35). and this is ecnough
to prevent convergence to a solution branch in some cases. Even more teiling, it
cigenvectors obtained trom the algebraic eigenvalue problem are used in conjunction with a
sermanalvtic entorcement ot an orthogonaiity condition (for exampie. by means ot a
numencal guadrature). then the resuit will not be precisely orthogonal in the aigebraic
problem. and if the next stage of the problem 1s solved algebraicallv. errors are introduced.
We theretore re-derive equatons (1 7)—(29) in the appendix for the algebraic svstem (35,
This ensures consistency of numerical values throughout the anaivsis.

Y
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The strategy 15 the same as that described in §83.2 ana 3.3, First. a soiution point
on a non-trivial brancn is sougnt using a perturbation expansion (or. 1or the soiitary wave
oranci. the weakly-noniinear soiution mayv be used). Numerical integranon or the discrete
{nalog ot (32b) conunues the branch away from the bifurcation point. and Newton's
{leratons serve as COITeCtor steps at selected points along the branch.

4. Columnar-columnar bifurcations and continuation

[n this section. we discuss some generai questions about bifurcations of the
specifying columnar tlow to other columnar flows, and then give numerical results for the
example specified in (34).

4.1. Transfer of B-criticality condition

Benjamin « 1962) has provided a simple test to determine whether a given columnar
vortex 1s subcritical or supercritical. As Leibovich (1979) has shown. this turns out to be
an appropriate test tfor axisymmetrnc disturbances) even though the crucial quanaty
Jetermining whether upstream propagation ot disturbances is possible is the group. not the
phase. speed. Subcritical flows can be expected to be influenced by small downstream
disturbances. This might be true even in flows that are supercritical according to this
classificaton scheme. since 1t does not cover nonaxially symmetric perturbations, but the
propagation characteristics of nonaxially symmetric waves (see Leibovich et al.. 1986) is
more difficult to deterrmune. Benjamin's criticality classification is important because it
seems to be usetul in correlating vortex breakdown data (Leibovich, 1983, 1984), as
Squire (1960) and Benjamin (1962) had proposed. In particular. the evidence (see
Leibovich, 1978. or L) indicates that tlows upstream of vortex breakdowns are
supercritical. while the tmean) tlows downstream are subcritical.

To determine the cniucality condition or a given columnar flow. we ask whether it
<an sustain infinitesimal waves of the form

o =y(n Rz (36)
which means that equation  [6a) has a solution in the form
®+ €0

tor infinitesimal €. This leads to a problem similar to that in §3.1, except that we wish to
consider columnar tlows other than the specifving flow twhich has ¢ = 0), and. rather than
fixing the wavelength (= L) and searching for values of A for which the linearized problem
s solvable. the question is turned around: A is fixed. and we ask if there is any real vaiue
ot k(= 27/L) for which the linearized problem 1s solvable. If so. a standing wave with
wavenumoer k determined is possible and the tlow is subcnitical. It not. the tlow 1s
supercritical. Let
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then we may write the differenual equanon ror the smail wavy peruroations as

-
Jd=0 9 \ 138)
- —— =k«<0 = LD.AO.
jz-

We now regard this as an eigenvalue problem ror k2. with A fixed. It is. due 10
(36), an ordinary differennai equation tor ¥ 1n standard Sturm-Liouville form and subject to
the boundary conditions y (a) = (1) = 0.

We know that the specitving tlow is supercritical for A < L, (because there are no
cigenvalues of (17) in this range of .\. either corresponding to columnar flows or 1o wavy
tlows. according to §3.1), and subcritical tor A > Wy, .because. according to the
observation of §3.1. there is a wave with some wavenumber tor each value of A > Ly,
with waves with indefinitelv long wavelengths branching off indetinitely close 10 U If
A = {gg, it IS clear that the eigenvaiue k= of 138) vanishes. and we may summarize by
observing that the eigenvalue k= of (38) is negative if A < Ly, Zero for A = iy, und
positive tor A > Wy, and that

dk?
— >0at A= )
QA A= Hoo

We wish to characterize the criticality condition ot the columnar vortex branching
-

otf from the speciiving rlow at .\ =Ly, on either side of the biturcation pomnt. o
cxplore this. we dirferenuate (38) with respect to .\, (0 dITve 4t an inhomogencous
cguanon tor —
TN
_ R A .
A iy v dY dkz dL(‘D.A) 1392)
L(d)..\)f-—.\-'j—: ) b
A A dA dA
where.
dL(D.\ b 2P )= .39b)
—_— = — i A—D) =Dy +
dA dN bl e
IA}P
— Doy,
//(D

Since ¥ sausties 1230, (39) 15 soivable oniv 1t
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We are interested in (40 at .\ =y, P =10. The numerator of (40} is

"f;(z{Zs:(r.u) ® - punt) (+1)

where we have used the notaton ot 121) and (32b). The only difference in (40), when
evaluated at the bifurcauon point tor erther of the intersecting solution curves is the

is evaiuated. On the

Jirecuon. <. of the parucuiar soiution curve aiong which

[O%
L b , . ot . . . ,
specttving tlow. —— =1, and on tne second branch ¢ = ¥ ,the eigenruncuon. apart frrom
o
an arbitrary muitiplicauve constant which we take to be unity. Thus. along the specitving
tlow. (40) reduces to

5
dk2 PUnET) (42)
S B
dA )
To calculate the numerator ot (40) tor the nontrivial bifurcanng solution. we
Jitferenuate (324) twice with respect to . The result. when evaluated at d =0, A =y, .
N

\ e o~ .
1.(0.“.,‘./(1) + :‘u,ly).\qﬁr.u“”/(b‘-‘*' :pl(r)(D :\).

oo

And solvability tor b requires

e N .
(D_{:;;}(r.“‘“.,(b -~ :pl(r)D:()A 43
Combining (43 witn (41, we tind that on the biturcating branen,
LI Al
x‘;k‘\' p‘(r;(D" : p!(”-/‘—v\ rdd)
i, = - -—T‘—— = - ———w—— .
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wnich is just the negatve of (42). Thererore. since k= increases rougn zero as .\
:nereases through W,y on the specirving rlow branch. is must decrease tnrougn zero as .\
increases (hrough Ly, on the principai branching solution.

Thus. we have shown that the criticality conditions hoiding on the spec:Iving riow
nd that hoiding on the flow branching wanscrincally from 1t are ransterred at the
bifurcanon point: this will be iilustrated in §4.3. If we hold A fixed. our probiem
~ontorms (o that considered by Benjamin «1962), who labels each columnar rlow aistnct
irom the specirving tlow - and there may be more than one depending on the vaiue or A -
ds ‘conjugate ' to the specitving tlow. Benjamin shows that, it the primarv tlow 1s
supercniucal. then alf conjugate tlows must be subcritical.  This is consictent with the local
results of this secuon.

4.2. Stability is not transferred

Stability of the steady solutions treated here cannot be addressed using the BHE.
sinee 1t contains no dvnamics. Instead. one must return to the Euler equanons. As a ruie.
vortex tlows tend 10 less stable to nonaxisvmmerric perturbations than to axiaily svmmetric
ones. A bifurcanon point is usuaily associated with a ranster of stabilitv. so that in the
present case. one would suppose that the specifving tlow is stable and the principai brancn
is unstable on one side of the bifurcation point A = (i, with the reverse being the case on
the other side. This is assured if the eigenvalues of the temporal linearized stability
problem. deriving trom the Euler equations. are simple. and provided they move with a
nonzero speed across the imaginary axis. In our example (33), at feast when strictly
resmcted to axisymmetric disturbances. the temporal eigenvalues are simple at the
bifurcation points of the BHE equation. but bifurcauon need not be associated with loss ot
stability. which implies that the temporal eigenvaiues in such cases are confined 10 the
amaginary dxis. This may be seen rrom the axiallv-svmmetric Howard-Gupta equation

Howara & Gupta. 1Y62), which coverns the temporai stability proplem. This cauauon 1s
~dentical to 117w provided oniy that the axial veiocity of the specifving row. Wi, he
replaced by Wi(r) - ¢, where ¢ = T 15 the (in genery’ "omplex) phase speed. und © = iw 18
the temporal eigenvaiue. In the example vortex (23). bifurc.. :on does not lead to ioss ot
~tability. fHere the Ravleigh discriminant 1s positive and there 1s no axiui shear. Thererore,
Hv Ravieign's (1882) stability criterion, (33) is lineariv stable to axisvmmetric perturbations
or ail Ao On the other hand. the same stability condition must hold for the soiution
“ranching rrom this point. at least for a limited range ot A. This must be so since the
“neanzed stability charactensucs there are determined by the unperturbed tlow at the
“rurcaton point. which is the same tor ail branches meeung there. Because the veiocity
crofiles on e biturcaung branch deform conunuousiv with A, there wiii be a finite A
nterval over which the Richardson number criterion of Howard and Guota. wnich
seneradizes Ravlelgh's critenion to admut axial shear, contunues to guarantee knear stabiliny
‘o axiaily-svmmetnic perturbations.  The ergenvalues. 0. of the temporai stapility propiem




S4n be Tound ITom tne ergenvaiues. . ot the st2uc birurcation proviem in the primary riow
~elected for numerical treatment (for wnich Wer) = 1), SInCe 10 1s ¢iasy 10 sSnow 1hil

‘ N
g=1tkllZ—1+.
o

The eigenvalues ¢ are simple and lie on the imaginary axis for ail A. and the zero
cigenvalue 1s assumed when A =u.

Szen (1988) has snown that, within the contines of the Amoid-Casimir theory,
these resuits may be extended to weakuy nonlinear stability. (The interpretation of this
theory and its signiticance. as appiied to this problem. 1s a compiicated mater that requires
and deserves turther study.)

4.3. Numerical results

Figure 1 is bifurcauon diagram ror the columnar solutions branching from the
primary tlow (33.34) with o = (4. showing the principal and the second bifurcating
branches. (The locations ot the points of bifurcadon are given in Table | in §5.) The
branches are descnbed by a measure of the perturbation axial velocity. We took this to be
the extreme value (regardless of sign). and on the principal bifurcating branch. on which
the perturbation axial velocity is monotonic in r. this always occured at the axis of rotadon.
On the second branch. the perturbation axial velocity if not monotonic. On this branch, a
disconunuity appeared in the bifurcatuon diagram based upon this measure described: for a
range ot swiri parameter. the exreme value occured on the axis. but shifted to a point otf
the axis. where the perturbauon axial velocity was of opposite sign. This is iilustrated by
©WO sets of points 1n the figure. one as described. and the other (smooth) set arrived at by
nlotting onty the perturbation axiai velocity on the axis.

(FIGURE 1 ABOUT HERE)

The principal columnar branch plays an important role. as will be seen
contrast. the physical significance ot the second and higher columnar branches 1, ulic.car -
tor the larger ampiitude perturbations on these branches. axial flow reversals are
necessanly accompanied by internai zeros ot the swirl. and hence instability according 1o
the Rayleigh-Svnee ([933) criterion (abbreviated subsequenty by R-S). This mav be seen
i tigure 2. which shows protiles from three points on the second branch of tfigure i. Here
the biturcation point occurs at.\ =y, and the protiles are drawn for increasing vaiues of
\ Uip. One can aiso see trom e protiles tor axial velocity how the disconunuity in the
biturcanon diagram discussed in the previous paragraph arises. e wiil not turther discuss
columnar branches other than the principal branch.




tFIGURE 2 ABOUT HERE)

For A < Ly, the principal branch shows a developing wake-like axial velocity
protile as the swiri parameter A is decreased from the brancn point Ly, 4s may be seen in
figure 3. The swiri veiocity is distorted as well. with the peak swiri moving outwards
reiadve to that in the primary vortex. Both ot these charactenisucs are quaiitanveiy like the
ume-averaged proriles measured by Gurg and Letbovich (1979) (further anaivsis or this
data 1s given by L and by Leibovich. 1978) downstream or vortex breakdowns. which are.
like the soiutions here. wake-like and subcritical. If the A/l is decreased below a value
of about 0.5. the swirl velocity develops an internal zero. and the branch will become
unstable according to the R-S criterion. We have nevertheless continued to

(FIGURE 3 ABOUT HERE)

‘ollow the branch. being curious to know 1t it could be continued to zero swiri. or whether
it would turn around. We found that 1t can be conunued to zero swirl. and the curvature ot
the magnified part ot the biturcanon diagram or figure [ indicates that the axiai speeds get
lurge as A/iyg — 0. The axial protiles shown tor A/pyy = 0.001 suggest that the limit tlow
becomes disconunuous. with a vortex sheet torming in the interior. The resolution ot the
singular limit behavior as A/, — O requires special treatment. and §4.4 is devoted to this
question.

On the A/l > | side of the principal branch, the axial velocity profiles are jet-like,
and the peak swirl moves towards the axis relative to that in the primarv vortex. Examples
are shown 1n figure 4. No tendency towards R-S instability occurs on this side of the
bifurcation point. These

FIGURE 4 ABOUT HERE)

velocity protiles not oniy resemble the protiles measured by Faler and Leibovich (1977.8)
and in the reterences cited in the previous paragraph for flows weil upstream or vortex
breakdown. they aiso can be accurately fitted. as can the wake-like solunons previously
discussed. by the same exponential functions used in those reterences. We note further
that the expenmentai data shows the upstream tlow to be not only jet-like. but supercnucal.
Thus. the pnimary vortex with uniform axial veiocity generates. through its principal
branch. vortices ot the same character as those round on borh upstream and downsmream
sides of experimentaily observed vortex breakdowns. so tar as the shapes of the protiles
and their crniticality conditions are concermed.

FFor A < Wy, the pnmary vortex 1s supercnitical and the principal branch is
suberitical. and according to the general theory ot §4.1. these charactenistcs should be
exchanged when .\ > W, We have tested this by computing the generalized Froude
number. N, proposed by Benamin (1962). This 1s detined to be




where ¢ and ¢. are. respectively. the maximum and minimum phase speeds of
innnitesimai axisymmerric waves of extreme iength propagating on the vortex. i N> 1.4
vortex is supercriticai. and if N < | itis subcritical. We have computed N on both the
primary vortex and the principal branch. and the resuits. given in figure 3. conrirm the
Zeneral theory on exchange of cridcality at the bifurcation point.

(FIGURE 5 ABOUT HERE)

4.4, Singular limit of zero swirl

[For the specirying rlow (34) that we have been using as exampie. the zero swiri
1 . . -
fimit A=() is irrotational. and the constant speed flow w =<r is unique. Therefore no

differentnable soiutions exist except for the specifying ﬂow. On the other hand. our
numerical results suggest that the limit A— O+ along the principal columnar branch
develops a strong shear layer tending in the limit to a vortex sheet separating tubmewlse
urotational limiting flows. in each section of which the flow is oppositely directed$
uniform infinite speed! We explore this bizarre situation by an asymptotic deve!
seems to fit with the numericai findings, and which gives the asymptotic depende:mof the
velocity levels. and of the shear laver location and thickness on A. -

It is convenient here to work with the total streamtunction v, governed by (11).
rather than the perturbation from the specifving tlow. For the specifying tflow (34). the
.imit of equation t11) when A=0 is D2w =), with a soiution that is linear in r=. We assume
the existence of a discontinuity in this limit. located dt r=r«. at which the streamruncton

reaches its minimum value, W(rs) = — w«(A) . The anaiysis of this section in simpiified by

the change of vanable

4
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- . I -
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For A very smalil but not zero. we assume the existence of a singie internai laver.
centered on Nx and with a thickness o(A) that tends to zero as A— U+. that (oins these 1wo
constant speed soiutions. [Furthermore. the numerical resuits suggest that U\ ) — oo iy
A= 0. and we also assume this.

The soiution 1o the outer problem has been descriped above. and now we seek a
structure to the internai boundary laver separating the two irrotanonal regions. It is
important (and easv to show) that D2w = ) to ai/ algebraic orders in the smail parameter in
the outer regions. so that the full outer expansions retain the torm (45), with the
coetficients of N being functons of A.The point N« and the constants C and D occuring in
the outer problem are not vet known and must be determined by matching with this internal
boundary layer. The argument is reminiscent of activation energy asvmpltotics (sce
Buckmaster and Ludford. 1982). Swetch the radial scale near n = 1« , by taking

[ RN O
N=nNs+0X =MNx(l +uX), p= — 46)

where 0 is the length scale appropriate in the layer and it is assumed that 8(A) — - ‘&S

A—(). Near n« the streamtuncton is continuous and the appropriate scale tor it S‘» {A),

<0 we write w il

Wi + 8X) = — wa( A1 + (A) y(X:A)] F

in the layer. where the asymptotically small parameter €(A), like the parameters 6(A). and
wWx(A). remain to pe identitied. [From the definition of - wx(A) as the extreme value of w.

we must have

VIO:A) = v (0:A) =10 (4%)

where ( )’ = -(u%- and we also have v <0 for ail X . We substitute the ansatz (45-47) into

¢11) and invoke (3. This vields
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The distinguished limit arises ror 2awx € and 2aAo-e « both O(1), and we

thererore set
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2aws e = 402AdZe MV L = 1. (49)
which leads to the equation
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INKOE 7 2y (50)
v [—— 4 e =0

’ I+uX I+ ey

with exponenually smail error. We may now iook for a sofuton to this inner probiem 1n
the torm ot power series in the smail parameter. It is more convenient in the anaivsis (o
regard € as the conwoiling smail parameter rather than A, and so we take

V=yotEy]+ (51)
(L= U]E+ U2~ + (52)
— =y, +YE F (53)
2N

+nd the slightly unconvenuonal form of the [ast expansion makes the matching with the

outer soiution simpier.
The equations tor tirst two coetficients. v and vy. ot (31) are

hl -
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vo + ¢ 02y (NE)
: 2y .y dy 55
vt 200 = fugx - =™ 153)
X
0

The soluton to (34) sausrving (48) is
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voX) =10 sech(X).

nd the solugon to (33) is
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We now match the streamrunction in the inner region with the two outer re2ions.

Vatching 1o second order in € vieids

L. (2 + el l+a)) + vage (58a)
S 2
=M%
C=-——l——vl+eln2+l7ez) (38b)
2aen« -
1 R -
D=-——t-1+e(l-In2)+ €lbn) (58c)
JUEN «
_u:e+53(l—+:l;a~in?_) t58d)
d = Nxu, (58e)
and from these we can tind
(586

. )
A =2nx(20d exp2ave)) ~.

The numbers ¥ in (38a) and by in (58¢) are undetermined at this order. and theretore
our soluton is completely determined only to one order less than we have shown - on the
other hand. it is necessary to match at the level shown to accuratelv determine the sojution
"0 that order (i.¢.. to within an error ot O(g)).

The composite expansion ror W constructed trom (45-47 .36 3% 15
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Equatons (38) give 0. r«, and A as a funcaon of the parameter £. and from tnem
the dependence or 0 anar« on A can be evaiuated to vieid the desired asvmptonc
relagonship between these parameters as A—{). As seen in rigure o. the differences
between the computed and the asymptotic values are only a tew percent for A=().01 The
asvmptotic soiution (39) is compared in tigure 7 to the computed streamrunction and axial
velocity for A=1.769-10-+ The agreement is quite good. considering the fact that Ws=
(.13, not vet large as the analysis assumes. meaning that the asymptotic relation is good far
bevond its expected region of Iyxi>>1.

(FIGURES 6 & 7 ABOUT HERE)

The azzmuthal velocity component. v, is exponentially small except in the shear
laver. The shear layver is a concentrated region of vorticity, with both axial vorticity arising
trom the swiri as weil as azimuthal vorucity anising trom the variation in axial velocity

JAcross the laver present. As A—(). the swirl component v — () in the laver as .\ /lln A|.

which is very much slower than A.

5. Periodic wavetrains

The specifying tlow is subcritical for A > gy for any A in this range, an
infinitesimal standing wave is possible. with wavelength depending on A. Fixing the
wavelength at L. we continue infinitesimal standing waves to finite amplitude for the
specifving tflow (34) with o= 2 and o = 14 using the methods previously described. The

larger value of o was used in an earlier study by Leibovich (1970), because it provided a
good fit to Harveyv's (1962) experimental data. The eigenvalues Hpm, determined
numerically as described in the Appendix. are given in Table 1 for a= 2 for L = 0 and 20.
and for o = 14 for L = 6.20.100.

o4 L oo ol Ui
z 6 1.8433 1.9693 6.2743
20 1.8433 1.8547 t0.2743
14 6 17390 17986 ol147
20 17390 17445 61147
100 17390 17392 1147

Table 1. E:igenvalues ot the linearized problem tor selected values of L und a.
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Figure & is the bifurcation diagram tor the case o = 2 una L = i(). The diagram ror
« = [4is qualitativeiv similar. but the separatuon between the curves ror the coiumnar
branch and the first wavy branch cioses too rapidly to be conveniently illustrated in a
drawing. The soiid line gives the coiumnar (00) branch. open circles the tundamental
wavy branch (01). and the close circles the first harmonic wavy branch (02).

(FIGURE 8 ABOUT HERE)

We next expiore the wavetorm for three tlows on the tundamental wavy branch for
the case o = 14. L=10. The streamrunction at a tixed value ot r =0.25 is plotted in figure Y
as a function of z over one wavelength . for three values of A/lyy. AS /Ly, increases. the
wave trough becomes increasingly sharp and concentrated. and the wave crests
increasingly broad and tlat. The same wend is seen if the tfundamental wavy branches tor a
sequence of flows of increasing wavelength L are sampled at fixed A/,

(FIGURE 9 ABOUT HERE}

Figure 10 shows streamlines projected onto a meridian plane tor increasing values
of A/l tor the case L = 0 and o = 14. The deceleration of the upstream tlow caused by
the wave is apparent at the smallest value of A/pyy shown. The other two streamline tields
reveal a region of closed streamlines. with the size of the recirculation region growing with

A/lgp.

(FIGURE 10 ABOUT HERE)

The changes in wavetorms as either t A — W) Hag oI L increases are 1ilustrated in
tigure . Increases in either of these parameters appedr to produce 4 wave shape with a
very sharp trough, in which there are strong axial acceleranons. rapidly tending to 4 broad
flat crest. Over most of its extent. this broad crest is an essentially coiumnar tflow. but
distorted considerably tfrom the pnmary columnar tlow. These features are characterstic ot
a solitary wave, with L = . on a columnar tlow different trom the specitving tlow.

Velocity protiles at the wave trough are given in figure 11la.b for a two swirl leveis
furge enough to cause a region ot reversed axial flow to appear. Figure 11¢ shows the
difference between the axial velocity at the trough and the axial velocity at the crest. where
the tlow is nearlv columnar and. as wiil be shown. viraily indistinguishable from the
orincipal conjugate tlow. This is a perturbation caused fo the principie conjugale riow oy
the disturbance concentrated near the wave trough, rather than a perturbation to the
specitving tlow. The protiles in 12¢ are similar to the perturbaton axial velocity in solitary
swaves on the specitving tlow.




(FIGURE 11 ABOUT HERE)

The observations we have made about tne apparent appearance of solitary wave
behavior will now be put 1o quanutative tests.

The characteristic length of a soiitary wave can be measured by, say, its half-height
length. According to the weakly noniinear soiiton solution (29}, the half-height length (or
any other measure of the solitarv wave length) scaies with the inverse square root ot the

wave amplitude. 1/\/;:_1. or alternatively. with YA [A—iLogl, at least tor tA — gl

sutficiently small. The axial velocity perturbation at the origin is proportional to the wave
amplitude. €a. In figure 12 we have piotted the half-height calculated from our numerically
determined solutions on the first wavy branch for several wavelengths L = (6.20.100),
against the axial velocity perturbation at the origin to test to see whether the arnplitude-
length scaling appropriate to the weakly nonlinear solitary wave 1s approached by a wave or

the computed periodic wavewrain. \Waves exhibiting that scaling wiil have a slope ot - < on

this log-log plot. and the soiid line drawn has that slope. The wavetrain with pertod L = 6.

given by the open circles. deviates substantially from the - = slope both for small and large

wave amplitude. The longer waves. however, accurately display the solitary wave scaling
for amplitudes ranging from rairly smail values to quite substanual ones. Marked
deviations trom the weakly nonlinear solitary wave scaling occur for for very small axial
velocity perturbations and for axial velocity perturbations of O(1) and higher. As will be
seen in the next section, swong nonlinear etfects distort the solitary wave on the primary
flow in the same way, and begin to substantiallv modify the weakly nonlinear scaling at
about the same level of axial velocity perturbation. These deviations from the weakly
nonlinear scaling do not signal departures trom solitary wave behavior. but rather
cransitions to a strongly nonlinear solitarv wave regime. We note that for large
perturbatons. the L = o case talls on the sume curve as the longer waves. impiying that the
period of this wave is not iong enougn to exhipit solitary wave behavior at smail ampiitude.
but that it does develop strongly nonlinear solitary wave behavior at large amplitude.

(FIGURE 12 ABOUT HERE)

We conclude from these considerations that one wavelength of a periodic wavetrain
rapidly approaches a solitarv wave as the wave amplitude increases above a modest level.
The resuiting motion may be characterized either as weakly or as strongiy nonlinear soliary
waves. depending upon ampiitude. Furthermore. the columnar tlow to which these
solitary waves tend. at distances from the station of maximum amplitude large compared to
the half-length Ly 2, is not the specitfving tlow. but the principai conjugate tlow. This point
i~ illustrated in tigure 13 Figure i3a shows tne difference between the streamtunction ot
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anincipai conjugate riow and that of the 1irst wavy brancn as a4 runcuon of r 1or wavelengtn
L = 6 tor three vaiues (0.05.0.25, and 1.0) of (A — i)/ Hon. cOITESPONAINg tne waves or
increasing ampiitude. .\t the largest (A — Uyg)/ Ky (hence the largest ampittude). the
Jifference is bareiv detectable. FFigure 13b shows the same tendency as L increases with
the wave ampiitude rixed.

(FIGURE 13 ABOUT HERE)

6. Solitary waves on the specifying flow

When the specitving tlow 1s slightly supercritical. a weakly nonlinear solitary wave
29) is possible. A diagram summarnizing the numerical conanuation of this solitary wave
solution branch to more strongly supercritical conditgons (A decreasing rrom Ly, note that
the scaled distance rrom the branch point. IA = Lgl/Hgg, Fanges Irom zero to 4 maximum of
unity) 1s given 1n rigure 14. The diagram superposes two measures ot the wave disturbance
of the specifying coiumnar flow. the maximum perturbation axial velocity (W' pgx) at the
plane of symmetry z = (). and the perturbation axial velocity on the axis at this plane
(w'(0.0)). The two measures agree for values ot IA — pggl/Hgg as large as 0.8. For larger
values of this parameter. the point at which the perturbation axial velocity is a maximum
lifts otf of the rotation axis.

(FIGURE 14 ABOUT HERE)

The shift ot the point of maximum axial velocity disturbance mav also be seen in the
«x1al velocity proriles at the symmetry plane. Protiles of the complete axial veiocity
-omponent are drawn 1n figure 15 for four vaiues of A. Three ot the protiles include
negatve values or w. which impiies the existence of a region of closed streamiines
containing reversed axial velocities. When the maximum perturbation lifts oft the axis. a
high-speed upstream-directed jet forms in the interior ot the recircuiadon region. and the
dividing streamiine develops a dimple at the uaxis and is no longer convex. We are unaware
of observations of such a phenomenon. and believe it to be physically unrealizable.

(FIGURE 15 ABOUT HERE)

Projections of the streamlines onto the mendian plane are shown in figure 16.
These plots show the emergence of the recirculation region. We have tound that the tlow
field 1s represented with reasonable accuracy by the weakly nonlinear solution (29) for
waves leading to axial velocity perturbations strong enough to cause tlow reversal. This is




<4 slgniricant 1inding, since we may then capture the essenuais or our numencai
~omputations or a strongiy perturbed flow with the simpie

‘FIGURE 16 ABOUT HERE)

‘ormuia (29). To show the levei of agreement. we have compared (for a = i4) w't0.0)
from our numericai computations with the approximation (29). This is found in figure 17.
together with a comparison of the dependence of wave half-length with wave ampiitude

: L ] . , .
tmeasured by w(0.0) with the - 5 power law dependence obeyed by the weakly nonlinear
solitary wave. The weakly nonlinear solution (29) overpredicts the wave amplitude and

length, but the differences are less than 10% for wave amplitudes large enough to cause
stagnadon and reversed axial flow.

(FIGURE 17 ABOUT HERE)

Contours or the perturbation streamrunctions. as predicted by numerical computation
and by the weakiv noniinear approximation (29), are shown in figure i8. We judge the
agreement to be quaittanvely good for ail three vaiues ot A — gt/ shown.
quantitatively good for {A ~ Liggl/Hgg = 0.1, and acceptable for some purposes for the
higher values of 1A — pgol/lgg. [t is worth noting that a stagnation point first appears in the
flow for [A — Lggl/Hag = .25, so the three cases shown in figure 17 range from ;:@E‘rateiy
to strongly nonlinear. A

7. Discussion and Conclusions

We have shown here the connections between fully noniinear standing periodic
wavetrains and solitary waves and the underlving columnar tlows. From a given primary,
or “specityving . coiumnar tlow. other columnar tlows. solitary waves. and periodic
wavetrains may be constructed. The solitary waves exist only when the pnimary tlow 1s
supercniical. a conditon that arises when the swirl rate or axial voracity in the primary
tlow 1s less than an easily determined critical value. Periodic wavetrains exist oniv when
the pnmary tlow 1s subcritical. which arises when the swirl rate exceeds the cnincal value.
On the other hand. the periodic waverrains rapidly atain the characteristics ot solitary
waves as the swirl. and with it the wave amplitude. increase tor tixed wavelength: or as the
wavelength increases at tixed. but tinite. amplitude. These solitary waves do not propagate
on the primary subcriucal columnar tlow. Instead. the tlow tar from the wave center 1s the
principal conjugate columnar tlow. The latter tlow. in turn. connects to the pnmary tlow at
the cninical swiri level. and as we show 1s supercritical when the primary tlow 15 subcnincai.
Thus the requirement that tflow upstream ot solitary waves must be supercritcal is
maintained.

The simpte. partly analvtical. tormuia for weakly noniinear solitary waves 1s shown
‘o t1t the numencai data for tullv nonlinear solitary waves very well for a substanual range
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ot ampiitudes. The errors associatea with this 11t are reiauveiv smail even ror waves witn
ampiitudes large enough to cause stagnaton points and reversed axiai tlow to occur.

When stagnation points torm. and with them recirculation regions ot closed
streamiines. we must tace the speciai questions concerning the interpretation of the resuits.
This 1s due to the weil-known nonuniqueness or steady. axially symmetric. inviscid tlows
with closed streamiines. When closed streamsurraces exist. the specitficauon or the
vorucity distribution by tunctional forms ror H'(y) and F(w) determined by the upstream
flow need not be continued into the region of closed streamlines. In fact. it the tlow is 10
be steady and to be the limit of a viscous tlow as the viscosity vanishes. the vortcity in the
recirculation region must satisty the consiraint found by Prandd (1904) and Batchelor
(1956), which requires F(y) = 0) and H'(\) = constant. One might think that a solution
with closed streamiines. ignoring the Prandtl-Batchelor (or PB) conditon. can be made
consistent with it by recomputing the tflow inside the dividing streamsurrace. using the PB
critenion to fix the interior vorucity distribution. but maintaining the exterior tlow and the
shape of the dividing streamsurtace. This generallv cannot be done. however. while
balancing the intenor and extenior pressures. Thus. 1f one 1nsists on satistving the PB
condition. tlows computed with an arbitrary specifving tlow upstream must be discarded if
recirculation appears unless a tree sreamiine type of problem is solved in which the
boundary shape between the external flow and the internai (PB flow) is part of the problem
(see Leibovich, 1968 for an example of such a construction).

On the other hand, the PB criterion fails if the flow 15 not truly steady. (I' aigo may
fail in other circumstances. as described by Batchelor, 1956.) Itis eas to imagu‘.tii:t, arly
inviscid flow developing due to externai forcing of various kinds, and then sewting f
phase of very slow change. If closed streamlines are present. then viscous effect:
and cause the tlow to vary with time. But this development is very slow. and so 1.
interested in time intervals short compared to the viscous time (of order R2/v. where R is o
length scale charactenizing the recirculaton region). then the PB condition does not
constrain the vorticity distributon. The PB criterion also tails it the axial svmmertry 1s lost
teven 1f the nonaxiaily symmetric component of the tlow 1s infinitesimaily weak) since
there 1s then fluid exchange across the nomunal closed sreamsurtace. Our interest in
vortex breakdown leads us to contemplate tlows in which »Hoth of these conditions (external
torcing driving tlow axially-symmetric development ot ¢l sed streamline regions on inertial
ume scales, tollowed by, or coincident with, symmewy breaking instability) are acuve. If
an axially-svmmetric recirculation zone existed and then was broken. the tluid exchange
across the nominal boundary would. in our view. create an interior vortcity distribution
that is not inconsistent with that 1n the external flow upsmream. Thus the external torm for
' (y) would be reasonable in the intertor (but the entire flow would of course be perturbed

by the asymmetric mouons). and a reasonable torm ror the circulation in the interior would
be not Fiw) but - I'(w). This alteration is dvnamically compatble with the tflows computed
here (as pointed out in L) and produces a tlow with an interior swirl sense in agreement
with that in the external tflow. which is certainly required if there 1s exchange of tluid.
Thus. 1t 1s our view that the flows calculated here having recirculation regions are sensible.




althoughn possibly too simpiistic. models of reai voriex tlows with stagnaton points and a
semblance of a recirculation region talbeit a broken one). We are in the process of
exploring the breaking of the svmmerry ot these tlows produced in this paper. and intend to
report on that investigation in the tuture.

Acknowledgements

This work was supported by the U.S. Air Force Office of Scientitic Research under
arants AFOSR-87-0255 and AFOSR-89-0346. monitored by Dr. L. Sakell. Additional
support was provided by the grant AFOSR-89-0226. monitored by Dr. J. McMichael.
and by the U. S. Army Research Office ar the Mathematical Sciences Institute of Comnell
University.




Appendix: Numerical Implementation

A.1 Discretization
A finite-difference discrenzatuon is done on equauon 16), wnten in the torm:

D2 + Ay =t LI TP ey <0 A b
O or ) gge

The tinite-difference approximation corresponding to this torm of the radial derivatives has
the property that the contribution ot each cell boundary to the circulaton around the ceil is
the same ror the two cells adjacent at that boundary: the result is that any group or ceils
saasty the Stokes theorem when individual ceils do, similar to the tlux consistency in
“conservaave' discrenzauon or the Navier-Stokes or the energy equauon.

We expect solutions that have sharp axial gradients. and non-uniform grid spacing
may be necessary in the z-direction. This is done by detining a computational coordinate .
related to the pnysical coordinate z by z=t(Q) (£'(D#0); the z-derivative in tA 1) becomes:

o-d | f_)_/’ 1 od\
iz ol @l

Equaton (Al) is discretized by cenmal differences on a rectangular grid having unitorm
spacing in (r.), corresponding to variable spacing in z. The finite-dimensional version of
equation (A1) 1s—

DD +Q@A) =0 (A2

where:

-

(@), =Dl <)

£ = NPy = Q) = A PUDY - - QUEdih)

D=D"+D”
f_gr.:(l_?xr;ﬂ i i=q and i=p-1
dps 1_22'_:-1 i
(D‘r)rqu:< N ( (“r.!‘)) J=q and 1=p
A ( “T;) | j=q and i=p+1

t) otherwise
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AL_‘;!:‘(Z_u,l'(;u-;;,l)]-‘ 1=p J=y-i
, % SALT LT LAl A AT i=p J=y
=gy i . _
AT Ny alid) i=p 1=g+l
Lo otherwise

Df, D”are directionai operators . containing entries relevant to the derivatdves inr.
Jdi ccuons. Each contains three nonzero diagonals in a block structure as shown in figure
Al. The separation or D into 1ts direcuonai components and the structure of these
components wiil be used 1n secuon A.2 below 1o form etficient and consistent concepts of
separauon of vanables and inner product tor the discrete problem A2.

(FIGURE A1 ABOUT HERE)
The contribution of boundary points with Dirichlet tvpe boundarv condition 1s placed
in §2 when non-zero: ror Neumann type poundary condition. an externai node is detined
o . : : . - o ‘ . dd
outside the bounadary. its value given by the first derivative at the boundary: for T we

set Py, =Wg , in the equanon for the boundarv node @y . The singularity of (A1) atr=0 is
not explicitly present in the numerical problem, since ®=() at r=0). and the discretization of
(A1) takes place onliy in the intertor ot the domatn—a tinite distance from r=0) (more on this
singulanty in section A.).

A.2 Algebraic Treatment of the Bifurcation and Continuation
In the nerghborhood of any biturcauon point A=, we expand the solution 10 (A2) in

£ smail parameter €. 2s In (18):

in‘QU*E; 1‘_. -’\.;’

.\=‘U.+E‘.'\'u+t‘:k‘1'f‘..

Substtuting 1nto (A2) and collectng terms ot like power 1n €. we obtain the
sequence of equations. analogous to (20). the tirst three of which are:

Loo= D+ uP’~Q"1g=1D+ 35" ]g=0 A du
L 9 =- ’\"\B")Qz)' i‘“) Oy Qo rAdh
L 0r=-~PVag - koP 0y - 280001 - S 00009 - A de

)
NoP 70000

where the derivauves ot £ are detined tollowing (19Y:




= E)!)q

_M(_(_Q;:()) ‘ \E\‘:‘ -
By ot Pk

\'pqukl =

g o( b 34(Q)
i Q )\Pqij = —Q)-Ill(ggz()» Q! *pqijki =t ,
- A D)ij Pkl

S“\) = “' B\k) T Q\k)

The eigenvalue problem (Ad4a) can be solved bv separation of vaniables: let Oy have
the form. equivalent to (21)

(Q0)ij = Q)i (Qn),

. . 2 R g - - N irs a e 3
whnere Q}; and Q;; may be called "directional” components ot Qq . Substitutung 1w (Ada) ana
asing the repeated block structure of D we obain:

1 1 ) .
DO, + @Y =@M ) ) (9h)

+ @0k (D4 (Qq)j) =0

which is an equality of two rank- 1 matrices: there exists therefore a scalar B such that:

-B (Q{i)q T ‘Qz)quj @f;)j =0 (A 50)
.nd:
.I_)‘;)\-_‘lim }"_Dr)f\“l -1 L;,g[i - 'Q‘“\;qlﬂ ‘Q:\)l - u (Q:\)p =1 ASh

Note that P is invertble since it is a diagonal matrix having ptrj) entries on 1ts dizgonai.
wnich are positive.
The eigenvalues (3,, Lnm and their eigenvectors are tound from (A 3) by the
'ndiagonal set of subroutines tfrom Eispack.
Define an mnner product as tollows:
<x,y>=xTSy AO)

Anere:

(‘_S‘_)pq]] = (S.r)pl (:i,')uj

,A
tn
v




4 . . DT . § , .
and §', §# are diagonai: S* = diag ‘r—--' S*= mag[t (Z_,)] {the 11rst and last eiements may

be different due to the boundary conditions): both are positive aetinite.Under this inner
product. (B‘”)'IL is seif-adjoint and the eigenvectors of (A-a) are orthogonal.

Multipiy (Adb) by 12‘“\'1 to obtain the seif-adjoint form ot the operator. and we can
impose a solvability condition:

< @8 og g+ ko P o), 00 > =0 (AT

This is used to tind k. as in (23). To soive (Adb) for Q; , we use an eigenvector
expansion method. Simiiarly. x; and ¢; can be found from (A4c). and so on 0 any desired
order. We used two or three terms of (A3), depending on the tvpe ot bifurcation
encountered.

. oD o . :
Letd = E——- and take the derivaave ot (A2) with respecrto A:
dA

LD =-PD) (A8)

This is a system of ODE's for ®©(A), equivalent to (29b): given iniual conditons
M®(Ag) from (A3) or the weakly-noniinear esumate ( 30), this linear system can be soived
for . We use Sparspak (George et al. 1980) to solve (A8) and a Runge-Kutta integrator
(Press et al. 1986) to integrate over A.

Given ®g and A, an approximate solution of (A2), we may define a Newton's
Method iterauon |[Dennis & Schnabel. 1983]:

DBy = Oy - [D+ARLV QY] (D D+ Q(D 0] (A9)

where:

Under some muid assumptions. in parucular that @ be close enough to the exact
solution and that the Jacobian be nonsingular and Lipschitz continuous, this iteragon will
converge 1o the exact solution at quadratic rate { Dennis & Schnabel. theorem 3.2.1]. If we
make the ininal esumate (A 3) and the integragon (A8) accurate enough and stay awdy {rom
bifurcation points (where the Jucobian is singular), then convergence or this step 1s
pracucally guaranteed.

We use Sparspak to soive each step of (A9). and a line search algorithm to improve
zlobal convergence propernes. The structure of the Jacobian in (A9) is the same as thatof L
i (A8). so the most time-consuming part ot the Sparspak algorithm—the structure
(lecomposition—needs to be done oniv once.

R :‘()_




A.3 Numerical Errors and Convergence

Two tvpes ot numencal errors need to be considered: the discretizaton error (the
Jifference between the exact anaiviic solution and the exact solution or the discrenzed
svstem), and the convergence error (the difference between the numbers actually obtained
and the exact solution of the discretized problem). Convergence errors are impornant in the
corrector step only since those occurring in the predictor steps—initial esomate and
integradon—are irrelevant when the corrector step converges.

The initial esumate need not be very accurate. as explained above. However, if it is
too inaccurate. then the corrector procedure may converge to a different branch or not
converge to a soludon at all. The initial esamate will improved as €—0 in (A3). but the
integration and corrector steps wiil lose accuracy as the Jacobian becomes singular near the
bifurcadon point. We tfound that with €=0.01. taking up 1o 3 terms of the series (A3) leads
to convergence of (A9) and reasonable accuracy for the subsequent integration.

The convergence errors are determined by the stopping criterion of the corrector step
CA9):

ID®+QDA) I < §2

The change in ii®Dll in the last Newton step is usuallv considered to be of the same order as
the convergence error. For 0=103, the typical value was: Il A@ II=10-3. As shown below.
this is much smaller than the estimate for the discretization error. and we may theretore treat
the computed solutions as “exact” solutons of the discretized problem.

Equation (A2) was derived using central differences. and is second-order correct in
Ar, AL. The grid transtormatons z—{ used have a finite derivative evervywhere, and
theretore do not etfect the order ot the runcadon error (Kalnay de Rivas. 1972); theretore 1t
1s considered second-order aiso in Az. Higher-order accuracy. as well as an esumate tor the
Jiscretization error. may be obtained bwRichardson's Extrapoladon. Computation was
repeated for sample cases with gnids having resolutions of (N\N,), where N. & N, €
(10.20.40): 9 different gnids. followed by a 2-dimensional extrapolation to %— — 0.
Typical values ot the reiative difference of the second-order solution trom the exmrapoiated
results are presented in figure A2: these differences serve as an estimate tor the
discretization error.

(FIGURE A2 ABOUT HERE)

To further vaiidate the above estimate of the discretization error. we appiied the
numerical algonthm to a problem having a known solution. The nonlinear runction €2 in
¢quation (16) 1s chosen to be:

D2

QPN = A D + —m—
rJitar)




whnere J; is a Bessel runcuion of order | and a 1s its 1irst zero (¢ =3.8317..... Equanon
+16) with this €2 has an analvtic soiution which 1s qualitauveiv similar to the computed (and
weakly nonlinear) solitary waves:

3 N ) YA . R
D(rz)y=<(a--\NrJilan secn‘(:z N a ~-:\)

This soiution bifurcates from the trivial d=0) branch at A=¢ < and increases in magnitude as
A—=0. (This problem does not necessarily correspond to a physical primary tlow.) The
discretization errors for ®. g, Hoi and the tirst two axial wavenumbers are presented in
figure A3.

(FIGURE A3 ABOUT HERE)

The error 1n the perturbation streamfunction with the 2020 grid is close to 2% for
the test function and less than 1<% for the Richardson-extrapolated case. For veiocities
‘computed from the streamtunction by central differences), the discrenzation error 15 larger.
but sull not exceeding a few percent on a 20220 grid. The results in tigure A2(b) are tor the
axial velocity w=ow/rdr. which is strongly dependent on r-resolution. The errors in the

values of the axial wavenumbers \ 3, and the bifurcation points plnm are similarly ot order
1% for the same level of resoiution. The 20x20 grid was therefore the standard i most of
our computations.

A.4 The Singularity at r=0

Equaton (16) has a singularity on the axis r=0. and construction of a numerigsl
scheme as well as interpretation of the results should take that singularity into account. The
discrenzation (A2) makes explicit use of the boundary condition (16¢) at r=(). and applies
A1) only to intertor grid points: the singularitv is thus avoided. However. if the ¢rid is
retined unul % hecomes very furge at the tirst grid point ot the axis. then the marrices
involved will become unbalanced and numerical accuracy will deteriorate. I~ our case such
fine grids are not necessary since Richardson's extrapolation seems to show convergence
betore very lurge numbers occur.

The singularity is encountered again when we compute the axial velocity at the axis,
which is used as a measure of the perturbation size. The definition: w=r"!dw/dr cannot be
applied directly at r=0: two numerical schemes are used. and the values obtained for wi().0)
agree to within a tew percent.

The tirst method is a quadratic extrapolation of w values from interior gnd points.
coupled with the condition: gw/or=l) at r=). The quadratic function satistving this condition
and passing through the tirst two interior grid points is:

Wir) = L thr)[-l-(A—rr->2] +%\\f(2Ar)[(;T>2-l]

leading to:

-A8-




SwWiAD) - wi2An

N

W) =

The second method appiies Stokes™ theorem to a rectanguiar loop or dimensions (or.
Oz) touching the ax1s r=1) and centered about the line of symmetry z=(). To reduce the error
associated with numerical integration over a tinite rectangle, we let 6z—¢) and obtain a
balance involving r-integraton only. The vorucity integrai can be expanded in powers or
dz. 1 being the azimuthal component of the vorticity:

Sr 5{12 )
weds = n(r,())+z{-,’-'3{r.0)+... dz dr
;' ()J‘ ‘)2’/2[ [¢/4 ]
or
=9z J nr.0) dr + O(8z2)
0

A simiiar expansion 1s done ror the circuiaton integrals:

f# uedl = |[w(0.2)-w(dr.z)] dz
-62/2
or
+ f[u(r.éz/Z)-u(r.-Sz/Z)] dr
0

{‘ Sr
}aE‘J ~.
=:Sz‘ wi(0.0) - w(dr.0) - Ta—z-jtr,()) dr { + O(8z<)

-

8]

Comparing the leading terms in 0z. we obtain:
N
t . .
L ! g
wi(.0) = weor.0) + }} n(r.0) + . r0) ] dr

L rdz-

)

. \ . . 1 . .
The integrai was computed using the Simpson 1 -rule. and the two expressions tor

wi0.0) were compared for or=Ar and 2Ar. The differences were of order i+ in most

cases. and increased up 10 3% oniv as A—u (where the perturbation 1s small and roundort

error becomes significant) and as A—0 (where luarge radial gradients require increased
resolunion). We theretore used the simpier quadratic exwrapolation torm throughout. This
<Omparison aiso serves as an additional check on the convergence of the numencal resuits

near the singuiar fine r=0.
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Figure Captions

Figure 1. Bifurcauon diagram ror the tirst two coiumnar pranches. The extreme
perturbaton axial velocity occurs away trom the axis on part ot the second
branch.

Figure 2. Velocities on the second columnar branch. for different vaiues or the swiri
parameter A. (1) axial velocity (b) azimuthal velocity.

Figure 3. Velocities on the supercritical side ot the principal columnar branch. (a)
axial velocity (b) azimuthal velocity.

Figure 4. Velocides on the subcritical side of the principal columnar branch. (a) axial
velocity (b) azimuthal velocity.

igure 3. Exchange of criticality between the pnimary tlow ( —o0— and the principai
conjugate branch ( —e—:. using Benjamin's Froude number criterion.

Figure 6. Comparison of computed (0 ) and asymptotc (— solutions in the limit
A—0 on the principal branch. (a) location of the boundary laver (b) maximum
of the streamtunction W= (<) laver thickness 0.

Figure 7. Comparison of computed and asymptotic velocity profiles for the principal
branch. at A=0.001u0 .

Figure 8. Bifurcation diagram ror the periodic branches of ug; and woy ; =2 for
better separation of the bifurcatuon points. —= nrincipal columnar branch :
—o— [.=10 wave centered at z=1/2: —e— [.=1() wave centered at z=t):
—3— L=5 wave centered at z=1./2. —#— =5 wave centered at z=¢).

Figure Y. Approach of the periodic soiutions to localized waves. (a1 fixed length L=b:
wave trough becomes localized as the wave amplitude increases. (b) fixed
amplitude A/u=1.10: the half-height-length ot the wave approaches a constant
vilue independent of the computational domain length.

Figure 10. Meridional streamiines ot periodic soiutions: L=3, a=14. contour
mtervals of 0.1 .t ¢A=wiyi=1.3 | just betore the appearance of stagnation
pomts. (by (A—p)/u=1.6. u recirculation bubble appears. (o) (A—wyu=2.5 the
recirculation region grows with the perturbation amplitude. ¢ detati of the
hubble in (¢,




Figure 11. Velocites on the periodic nrancn ol Uap al the wave center z=t (4) axiai
velocity by azimuthal velocity (¢ ditference in axial velocity berween the wive
center and .

Figure 12. Solitary wave behaviour of the pertodic solutions: the dependence or
effective wave iength (half-height iength) on the wave ampiitude. compared to
the -0).5 slope ror an exact solitary wave. o L=6: @ L=20: + L=100. ()
wave ampiitude measured by extreme axial velocity (b) wave ampiitude
measured by the distance tfrom the bifurcanon point.

Figure 13. Convergence of the wave crests of the periodic solution to the columnar
solution of the same amplitude. () fixed length L=6. the difference vanishes as
the wave amplitude increases. (b) fixed amplitude (A-po) )/t =0.05. as the
computatonal domain iength increases.

Figure 14. Bifurcauon diagram. solitary wave branch. The exwreme perturbation axial
velocity 1s off the axis wnen A<0.16Uay .

Figure 15. Axial velocity at wave center z={) on the solitary wave branch

Figure 16. Meridionai streamiines of solitary wave solutions, L=3. contour intervals
0.05. (a1 Mg =0.80  (b) Alugg =0.70. a small recirculation bubble appears
() A/ugo =0.001, a large recirculaton bubble. (d) detail of the bubble in (b),
(e) detail of the bubble in (c).

Figure 17. Comparison of solitary wave amplitude of the computed (0 ) and weaklyv-
nonlinear (—= solutions. (a) bifurcauon diagram (b) detail showing the
bifurcation and the ampiitudes or flow reversal. (¢) halt-height-length vs.
ampittude ot the computed wave. compared to the -(1.5 slope ot the exact
solitary wave.

Figure 18. Companson of perturbation streamiines ot the computed (— vs. the
weakly-nonlinear ( e y solitary waves. (1) A/lon=0.90. contour intervals
0.004 by A/ugy=0.50. contour intervals 0.012 (<) A/iag=0.20. contour
intervals 0.02 .

<o . 7 2
Figure AL Structure of the matnces ty D, by DL -

Figure A2. Varianon with mesh size of errors relative to Richardson-extrapolated

values at \uog=0.80: @ actual computation with this mesh: o extrapolated.

ta) error in H(0.3.0) (hyerrorin wi(.0) (o) errorin Wag .

24




Figure A3. Vanauon with mesn size or errors refative 1o the exact soluton of the test
problem: @ uctuai computation with this mesh: © exwrapoiated. (&) MAXIMUM
error in O(r.z) at AMa =080 (b) error in axial wavenumoers () error 11 e

(d) error 1n Woy .
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A method for computing leading eigenvalues (having the largest real part) and their
eigenvectors for large generalized eigenvalue problems is presented. A linear fractional
transformation is used to map a group of leading eigenvalues into dominant eigenvalues
(having the largest modulus). The Dominant eigenvalues of the transformed problem are
computed by Stewart’s (1976) Simultaneous Iteration. Each iteration involves matrix-
vector multplication and the solution of a linear system, which can be done efficiently if the
matrices involved are sparse or have some special structure. Convergence properties are
similar to those of the inverse power iteration: the method requires an estimate for the
region in the complex plane containing the desired eigenvalues, and converges rapidly
when a good estimate is available. The amount of work is also comparable to that of the
basic inverse iteration, which is significantly less than that required for full eigensolution.
Examples from hyvdrodynamic stability demonstrate convergence rates, computation time
and the ability to resolve simultaneously groups of leading eigenvalues.




Computation of Leading Eigenspaces for
Generalized Eigenvalue Problems

1. Introduction
A generalized eigenvalue problem has the form:

Ax=0Bx (1.1)

where A, B e €™ are general complex matrices. In many applications these matrices will
have some useful structure, such as symmetry or sparsity.

Let the Leading Eigenvalues of (1.1) be those having the largest real part ; the more
common term. Dominant Eigenvalues, refers to those having the largest modulus . In
some applications, only a few leading etgenvalues of (1.1) are sought; for example, in
hydrodynamic stability problems, the real part of & is the growth rate, and the eigenvectors
of the leading eigenvalues represent the most unstable modes.

Traditional methods for solving (1.1) usually involve finding all the eigenvalues, using
the Q-Z algorithm (see IMSL or other numerical analysis libraries) and then sorting by the
real part. This involves O(n3) work, where n is the order of the matrices, and becomes
expensive or impractical for large n; little or no advantage can be taken of sparsity or other
structure of A and B.

Several methods exist for extracting selected eigenvalues and eigenvectors of standard
eigenvalue problems, i.e. when B is invertible (see, for example. Golub and Van Loan,
1983.) Power and Lanczos methods compute the dominant eigenvalues: inverse iteration
can find the eigenvalues closest to a given point in the complex plane and their
eigenvectors. These are not directly applicable to the problem of computing the leading
eigenvalues.

Recently, an integration method was proposed (Goldhirsch er al. 1987) for the leading
eigenvalues of a standard eigenvalue problem (where B is invertible.) This method is
simple and elegant: however, its convergence may become very slow (or, alternatively, the
size of the reduced problem may become too large) if the separation of the eigenvalues is
small. Another problem may arise if the problem is defectve, i.e. a leading eigenvalue has
generalized eigenvectors: in this case, the integration method may return inconclusive or

inconsistent results.




2. The Dominance Mapping Method

This method attempts to address the problems (1.1) which are not solved efficiently by
the other methods mentioned above. It will work for singular A and B; for defective
problems; it will take full advantage of the swucture of the matrices; and it allows some
contol over convergence rates. There are a few restrictions, however, which will be
discussed below.

The eigenvalues in the complex o-plane can be mapped to a A-plane by the linear

fractional wransformation:

A-1 (2.1)

where a is a real positive, and [ a complex, constant. The important effect of this linear
fractional mapping is to map the half-plane to the left of 6= to the inside of the unit circle
in the A plane, as seen in fig. 1. If m leading eigenvalues are required, and we select

such that:

> Re(B) i=l..m
< Re(B) i=m +1l...n

Re(o)) {

then the corresponding m eigenvalues will be dominant in the A plane:

>1 i=l...m
Al {< 1 i=m +1...n

@

/

B+a

Figure 1: The Dominance Mapping (2.1)

The eigenvalue problem for A is in standard form:

Cu=C,;'Cyu=Au (2.2)
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where:

Cy=-[{A-(a+B)B]

C;= [A+(x-B) B]

The problem of computing the leading eigenvalues of (1.1) becomes that of computing
the dominant eigenvalues of (2.2); the methods mentioned in §1 can now be applied. We
used Stewart’s (1976) version of Simultaneous Iteration, which applies to the most
general, non-hermidan C.

A transformation similar to (2.1) was proposed by Jennings (1977), in the context of
converting a quadratic eigenvalue problem to standard form. Jennings (and no one else, to
the best of the author’s knowledge) has not made the second step of applying a dominant
eigenvalue me:hod to a wansformed problem equivalent to (2.2).

The mapping constants o and B allow the user some control over the rate of
convergence and the order in which the leading eigenvalues emerge during the iteration.
The user must have an estimate of where in the complex plane the leading eigenvalues
reside; P is set to the left of this region. The point ¢ = 3+« is a singular point of (2.1)
which maps to infinity in the A plane; eigenvalues close to ¢ will map to very large
modulus in the A plane, and will converge rapidly during the iteration of (2.2). & should be
set, therefore. so that ¢ is near the center of the leading region or near the most important
eigenvalue.

The following algorithm computes m leading eigenvalues and eigenvectors of (1.1),
using the Dominance Mapping:

1. estimate leading region: select a, 3
2. perform L-U decomposition of C; = - [A-(ax +B) BJ;
(use the structure of A and B )
3. selectm initial column vectors u® e €X™
4. Simultaneous Iteradonon Cu=2Au:
for each multiplication u®*! = Cu® do:
4.1 multiply: v=Cpu®
4.2 solve the system: Cqu®*D=vy
5. map converged A; — Gj.

3. Singularities in the Dominance Mapping

The algorithm of §2 may fail in two cases, corresponding to the two singularities of the
mapping (2.1): the point 6=c , which maps to infinity in A, and A=-1 which maps to
infinity in ©.
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When ¢ -0jl <€ for some i <m, for a small (machine-dependent) €, then the matrix C
will be ill-conditioned or numerically singular. This is easily remedied by a small change in
o, which does not significantly affect any other properties of the mapping.

When |Im(_ Ci-¢C) | > 1 for some i <m, the corresponding A-eigenvalue is close to the
singular point A=-1. This implies that its separation from the subdominant eigenvalues
inside the unit circle is small, often so small that convergence is impractical. Some
improvement may result if we increase «; but this may decrcase the modrilus of other
dominant A-eigenvalues and slow down their convergence. In a case where leading
eigenvalues are widely separated in the imaginary direction, it may be necessary therefore
to restart the iteration with different 3 values to resolve separate clusters of leading

eigenvalues.

4. Example:

The performance of the DM method can be demonstrated by observing the amount of
work needed to resolve a fixed subset of leading eigenvalues, as the order of the problem
increases. The following example includes tridiagonal matrices of increasing size N, all

having two leading eigenvalues:

cyp =12 (4.1)
cr=1.1
Re(ocy) <1 fori=2.n.

Selecting o = 0.3, B = 1.0 isolates o1, 02 . The problem was solved first using the
traditional QZ routines (IMSL), then using the DM method but treating the matrices as
dense, and finally taking full advantage of the structure. The results are shown in Figure 2.

The savings in computing time relative to the full eigensolution can be significant: at
L
5

work is reduced by more than an order of magnitude when the structure is used.

n =100, only ¢ of the work is necessary even without exploiting the band structure; the
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1000 A

time

QR
DM, dense
DM, banded

- _J

Figure 2: Comparison of work to resolve 2 leading eigenvalues of (4.1)

5. Application to the Orr-Sommerfeld Equation
The Orr-Sommertfeld equation:

(D> o)y = iaR [(U-c)(D>a*yy - Uy | (5.1)

describes the hydrodynamic stability of parallel shear flow (see, for example, Drazin and
Reid 1981.) High accuracy eigenvalues were computed by Orszag (1971) for plane
Poiseuille flow with R=10000 (Reynolds number) and a=1 (streamwise wavenumber.)
The location of the twelve least stable eigenvalues are shown in figure 3.

Equation (5.1) is discretized using central differences (a spectral method may be more
appropriate in this specific case, as in Orszag (1971), but the banded finite-difference
matrix is a good example of cancidate problems for the DM method.) The eigenvalue ¢ is
replaced by ¢=-ic , to conform with the definitions of (1.1).

When Im(B)=Im(cy), eigenvalues 1 and 4 were the first to converge; 2, 3, 5 and 6 took
longer . » converge, since the imaginary part separation brought their A counterparts close to
the singular point A=-1. For Im(B)=Im(c2), the order was reversed: first eigenvalues 2. 3.
5 and 6 and then 1 and 4. In both cases, the first group converged within 10 to 13
iterations, regardless of the number of grid points.

The error associated with convergence of the A-iteration was not significant in our
computations. Using a stopping criterion of lICu-Aull € 10-3, the leading c-eigenvalues

were converged to at least 5 digits. The discretization error of the tinite-ditferencing

(compared to Orszag's results) is proportional to Ax<, as expected. The time 1o resolve the




most unstable eigenvalue and its discretization error vs. the grid resolution are plotted in

figure 4.
4 ™
_B Ll_;f
TH
12
23 9,10
> \L% _F‘
5.6’2’3
- J
Figure 3: Poiseuille flow eigenvalues. R=10000, a=1.0
/
time Relagive Error
Inoc;
1o o1}
slope = 1.3
\ oo }
10 t \
- .0001 F slope = 2.0
100 n 1000 001 01 Ax
(a) (b)
-

Figure 4: (a) the time to compute the most unstable eigenvalue of (5.1)

(b) discretization error vs. the grid interval Ax
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6. Conclusion

Using the Dominance Mapping and a Power Iteration method we can compute leading
eigenvalues and eigenvectors of large generalized eigenvalue problems. This method can be
more efficient than a full eigensolution even for a general pair of matrices, but is especially
attractive when the matrices have a structure that can save work in the Gaussian elimination
and matrix multiplication steps. The DM method can be applied to singular and defective
problems that may cause failure or slow convergence in other methods.

Use of the DM method is restricted, however, to cases where an estimate for the
leading eigenvalues is available. When this estimate shows a wide distribution of leading
eigenvalues along the imaginary direction, several passes may be necessary with different
mapping parameters to properly resolve all leading eigenvalues, as demonstrated for the
Orr-Sommerfeld problem.
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